
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1462
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Resource Discovery in Grid Computing
Ch E V T V Laxmi Research Scholar (Karpagam University), Associate Professor, Department of Computer
Science, Raghu Engineering Collge, Visakhapatnam,Andhra Pradesh. email:elaxmi2002@yahoo.com.
K.Somasundaram,Professor, Department of Computer Science and Engineering,Jaya Engineering College,
CTH Road, Prakash Nagar,Thiruninravur,Thiruvallur - Dist, Tamilnadu.

Abstract-This paper identifies the issues in resource management and scheduling in the emerging grid computing
context and briefly discusses techniques for scheduling using computational economy concept. In the context of Grid
scheduling, it involves four main stages: resource discovery, resource selection, schedule generation and job
execution. This article provides a brief overview on working of scheduling in the grid computing and its resource
management, important factors considered in resource management, comparison of different resource discovery
mechanisms and future outlook of resource discovery in the grid environment.

Index Terms- Daemons, Grid Computing, Resource discovery, Resource Management, Resource Scheduling,
Scheduler,

—————————— ——————————

1 INTRODUCTION

Grid computing is an integrated computer network
linking large geographically distributed and
heterogeneous computer systems and resources,
which eliminates the need for dedicated servers for
job computations but uses distributive resources
collectively to enhance computational power. It is a
type of distributed computing different from other
types like cloud computing and cluster computing.
In this case, the resources are scattered over a wide
span of area belonging to different individuals or
companies, which are used to solve different
segments of one single problem whose solution is
gotten only after combining all the individual
solutions of the segments computed by the
different allocated resources. Instead of using
dedicated resources from only one
individual/organization for computational
purposes, grid provides a platform that enables
resources from different organizations to be shared
so as to enable problems to be solved according to
the demand of the users. This helps in reducing
costs, increasing the computational speed,
efficiency, flexibility, scalability and performance.
Examples of some resources that can be shared in
grid networks are storage devices, operating
systems, communication devices, bandwidth,
simulation, software’s etc. To handle the different
resource tasks such as allocation, assignment,
authentication, authorization etc. efficiently there
is need for a good resource management planning.

2 RELATED WORK

Grid scheduling involves four main stages:
resource discovery, resource selection, schedule
generation and job execution.
2.1 Resource discovery
The goal of resource discovery is to identify a list
of authenticated resources that are available for job
submission. In order to cope with the dynamic
nature of the Grid, a scheduler needs to have some
way of incorporating dynamic state information
about the available resources into its decision-
making process.

A Grid a scheduler should always know
what resources it can access, how busy they are,
how long it takes to communicate with them and
how long it takes for them to communicate with
each other. With this information, the scheduler
optimizes the scheduling of jobs to make more
efficient and effective use of the available
resources. A Grid environment typically uses a
pull model, a push model or a push–pull model for
resource discovery. The outcome of the resource
discovery process is the identity of resources
available (Ravailable) in a Grid environment for
job submission and execution.
2.2 The pull model
In this model, a single daemon associated with the
scheduler can query Grid resources and collect
state information such as CPU loads or the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1463
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

available memory. The pull model for gathering
resource information incurs relatively small
communication overhead, but unless it requests
resource information frequently, it tends to
provide fairly stale information which is likely to
be constantly out-of-date, and potentially
misleading. Figure 1.1 shows the architecture of
the model.

FIGURE 1.1 THE PULL MODEL FOR RESOURCE DISCOVERY

2.3The push model
In this model, each resource in the environment
has a daemon for gathering local state information,
which will be sent to a centralized scheduler that
maintains a database to record each resource’s
activity. If the updates are frequent, an accurate
view of the system state can be maintained over
time; obviously, frequent updates to the database
are intrusive and consume network bandwidth.
Figure 1.2 shows the architecture of the push
model.

FIGURE 1.2 THE PUSH MODEL FOR RESOURCE DISCOVERY

2.4 The push–pull model
The push–pull model lies somewhere between the
pull model and the push model. Each resource in

the environment runs a daemon that collects state
information. Instead of directly sending this
information to a central scheduler, there exist some
intermediate nodes running daemons that
aggregate state information from different sub-
resources that respond to queries from the
scheduler. A challenge of this model is to find out
what information is most useful, how often it
should be collected and how long this information
should be kept around. Figure 1.3 shows the
architecture of the push–pull model.

FIGURE 1.3 THE PUSH–PULL MODEL FOR RESOURCE DISCOVERY

3 PROPOSED APPROACH

The push–pull model lies somewhere between the
pull and push model. In this each environment
runs a daemon that collects state information, and
this information is not directly forwarded to
central scheduler, there exist intermediate nodes
which are running daemons, that aggregate state
information from different sub resources. In the
push-pull model, the state of information which is
collected and it is not stored therefore, whenever
the resource information are needed, a daemon has
to run to gather the information to find the state of
resources. Therefore whenever we need the state of
resource information we have to run daemon
which is wastage of time and waste of memory
because of running daemons. If the collected state
of resource information is stored persistently in the
database, the time to search the state of resource
information will be reduced as well as wastage of
memory comes down as the daemons are not
running frequently. Figure 1.4 shows the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1464
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

architecture of the push-pull model with node state
database. The maintenance of resource information
in the database can be implemented by using any
database such as MYSQL, ORACLE even it can be
implemented by using XML and XML DOM and
SAX parsers.

FIGURE 1.4 THE ARCHITECTURE OF THE PUSH-PULL MODEL WITH
NODE STATE DATABASE.

4 MAINTENANCE OF RESOURCE INFORMATION
In the proposed architecture of the push-pull
model with node state database. The collected
node states are stored in a database, which are
collected by running daemons on each nodes,
which will be send to a centralized scheduler and it
is connected to the database where all the node
states are stored. The proposed architecture of the
push-pull model with node state database can be
maintained by the web database i.e., by using
XML. The following XML structure shows the
maintenance of the resource information as web
database:
<?xml version="1.0" encoding="ISO-
8859-1"?>
<node_states>
 <node>
 <node_id>1</node_id>
 <Resources>
 <cpu>
 <cpu_speed>1.8GHz</cpu_speed>
 <cpu_load>50%</cpu_load>
 </cpu>

 <memory>
 <ram_size>256MB</ram_size>
 <ram_usage>50%</ram_usage>
 </memory>
 <devices>
<Input_devices>Keyboard</Input_devices>
<output_devices>printers</output_devices>
 </devices>
 </Resources>
 </node>
 <node>
 <node_id>2</node_id>
 <Resources>
 <cpu>
 <cpu_speed>2.6GHz</cpu_speed>
 <cpu_load>70%</cpu_load>
 </cpu>
 <memory>
 <ram_size>512MB</ram_size>
 <ram_usage>50%</ram_usage>
 </memory><devices>
 <Input_devices>Pen
Input</Input_devices>
 <output_devices>Computer Output
Microfilm (COM)</output_devices>
 </devices>
 </Resources></node>
 <node>
 <node_id>3</node_id>
 <Resources><cpu>
 <cpu_speed>1.2GHz</cpu_speed>
 <cpu_load>40%</cpu_load>
 </cpu> <memory>
 <ram_size>512MB</ram_size>
 <ram_usage>30%</ram_usage>
 </memory>

<devices>
<Input_devices>Barcode reader</Input_devices>
<output_devices>Projector</output_devices>
 </devices>
 </Resources>
 </node>
</node_states>

5 RESOURCE SCHEDULING

The grid resource scheduling process can be
defined as the process of matching a query for
resources, described in terms of required
characteristics, to a set of resources that meet the
expressed requirements. To make information
available to users quickly and reliably, an effective
and efficient resource scheduling mechanism is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1465
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

crucial. Generally grid resources are potentially
very large in number with various individual
resources that are not centrally controlled. These
resources can enter as well as leave the grid
systems at any time. For these reasons resource
scheduling in large-scale grids can be very
challenging.

5.1 Research on Novel Dynamic Resource
Management and job scheduling in grid
computing (RNDRM).

This scheduling model is based on Heap Sort Tree
(HST) for computing the available computational
power of the nodes (resource) as well as whole
grid system. Here the resource with largest
available computational ability among the whole
grid system is selected to be the root node of the
HST and it is ready for the scheduler to submit a
job. The algorithm design for job scheduling is well
suitable for the complex grids environment and it
is based on agents.

5.2 Experimental Analysis

In the proposed architecture of the push-pull
model with node state database. The collected
node states are stored in a database, i.e., by using
XML. Now we give an example to explain the
Research on NovelDynamic Resource Management
and job scheduling in grid computing (RNDRM) to
choose one resource from three possible
candidates. The assumed parameters associated
with each resources are stored in web database
which are represented as table in table 1. The
resource selection process is used to choose the
resources from the resource list (Rselected) for a
given job. Since all resources in the list Rselected
could meet the minimum requirements imposed
by the job, we implemented Research on Novel
Dynamic Resource Management and job
scheduling in grid computing (RNDRM) to choose
the best resources to execute the job.

Node
State

Node
Node_ Resources

id CPU Memory devices
 1 Cpu

speed
(GHz)

CPU
Load
(%)

Ram
Size
(MB

Ram
Usage
(%)

Input
Devices

Output
Devices

1.8 50 256 50 Keyboard Printers
2 2.6 70 512 60 Pen Input Computer

Output
Microfilm
(COM)

 1.2 40 512 30 Barcode
reader

Projector

TABLE 1. THE RESOURCE INFORMATION

The resource selection algorithm should take into
account the current state of resources and choose
the best one based on a quantitative evaluation. A
resource selection algorithm that only takes CPU
and RAM into account could be designed as
follows:

Evaluationresource=EvaluationCPU+EvaluationRAM
 WCPU+WRAM

EvaluationCPU=WCPU(1-CPUload)* CPUspeed
 CPUmin
EvaluationRAM=WRAM(1-RAMusage)* RAMSIZE
 RAMMIN
Where

WCPU- the allocated to CPU speed;
CPUload-current CPU load;
CPUspeed-real CPU speed;

 CPUmin-minimum CPU speed;
 WRAM-the weight allocated to RAM;
 RAMusage-current RAMusage;
 RAMsize-original RAM size;
 RAMmin-minimum RAM size.

Now we give an example to explain the algorithm
used to choose one resource from three possible
candidates. The assumed parameters associated
with each resource are given in Table 2.

CPU
speed
(GHz)

CPU
load(%)

RAM
size(MB)

RAM
usage(%)

CPU
speed
(GHz)

Resource1 1.8 50 256 50
Resource2 2.6 70 512 60
Resource3 1.2 40 512 30

TABLE 2. THE RESOURCE ALLOCATION TABLE

Let us suppose that the total weighting used in the
algorithm is 10, where the CPU weight is 6 and the
RAM weight is 4. The minimum CPU speed is 1
GHz and minimum RAM size is 256 MB.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1466
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Then, evaluation values for resources can be
calculated using the three formulas:
Evaluationresource1= (5.4+2)/10=0.74
Evaluationresource2= (4.68+3.2)/10=0.788
Evaluationresource3= (4.32+5.6)/10=0.992
From the results we know Resource3 is the best
choice for the submitted job.

6 CONCLUSION

Computational Grids are quickly rising as a
practical means by which to execute new science
and develop new applications. The effective and
efficient exploitation of Grid computing facilities
needs highly advanced and protected resource
management systems. Efficient resource sharing
and accessing cannot go without the assurance of
high trustworthiness. In this paper we have
discussed three different models for grid resource
discovery architecture inspired by three different
philosophies. Grid environment typically uses a
pull model, a push model or a push-pull model for
resource discovery. The outcome of the resource
discovery is availability of the resources in grid
environment for job submission and execution. In
this paper, we have proposed push-pull model
with node state database where resource
information are stored in the database. The
proposed approach stores the node states, which
are collected by running the deamons, in the
database.

7 References

[1] Ian Foster and Carl Kesselman, “The Grid: Blueprint
for a New Computing Infrastructure,” Elsevier Inc.,
Singapore, Second Edition, 2004.

[2] Raksha Sharma, Vishnu Kant Soni, Manoj Kumar
Mishra, Prachet Bhuyan A Survey of Job Scheduling
and Resource Management in Grid Computing World
Academy of Science, Engineering and Technology 40
2010

[3] Hamscher, V., Schwiegelshohn, U., Streit, A. and
Yahyapour, R. Evaluation of Job-Scheduling Strategies
for Grid Computing. GRID 2000, 191–202, 17–20
December 2000, Bangalore, India. Lecture Notes in
Computer Science, Springer-Verlag.

[4] Srinivasan, S., Kettimuthu, R., Subramani, V. and
Sadayappan, P. Characterization of Backfilling
Strategies for Parallel Job Scheduling. ICPP Workshops
2002, 514–522, August 2002, Vancouver, BC, Canada.
CS Press.

[5] DAGManager,
http://www.cs.wisc.edu/condor/dagman/.

[6] Ghare, G. and Leutenegger, S. Improving Small Job
Response Time for Opportunistic Scheduling.
Proceedings of 8th International Workshop on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2000), San
Francisco, CA, USA. CS Press.

[7] Raman, R., Livny, M. and Solomon, M. Matchmaking:
Distributed Resource Management for High
Throughput Computing. Proceedings of the 7th IEEE
International Symposium on High Performance
Distributed Computing, July 1998, Chicago, IL, USA.
CS Press.

[8] Enterprise Edition policy,
http://www.sun.com/blueprints/0703/817-3179. pdf.

[9] N1GE 6 Scheduling,
http://docs.sun.com/app/docs/doc/817-5678/
6ml4alis7?a=view.

[10] PBS Pro, http://www.pbspro.com/.
[11] Figueira, M., Hayes, J., Obertelli, G., Schopf, J., Shao,

G., Smallen, S. ,Spring, N., Su, A. and Zagorodnov, D.
Adaptive Computing on the Grid Using AppLeS. IEEE
Transactions on Parallel and Distributed Systems,
14(4): 369–382 (2003).

[12] NWS, http://nws.cs.ucsb.edu/.
[13] Dail, H., Berman, F. and Casanova, H. A Decoupled

Scheduling Approach for Grid Application
Development Environments. Journal of Parallel
Distributed Computing, 63(5): 505–524 (2003).

[14] Abramson, D., Giddy, J. and Kotler, L. High
Performance Parametric Modeling with Nimrod/G:
Killer Application for the Global Grid? Proceedings of
the International Parallel and Distributed Processing
(IPDPS 2000), May 2000, Cancun, Mexico. CS Press.

[15] Gerasoulis, A. and Jiao, J. Rescheduling Support for
Mapping Dynamic Scientific Computation onto
Distributed Memory Multiprocessors. Proceedings of
the Euro-Pa ’97, August 1997, Passau, Germany.
Lecture Notes in Computer Science, Springer-Verlag.

[16] Goux, Jean-Pierre, Kulkarni, Sanjeev, Yoder, Michael
and Linderoth, Jeff. Master-Worker: An Enabling
Framework for Applications on the Computational
Grid. Cluster Computing, 4(1): 63–70 (2001).

[17] Cactus, http://www.cactuscode.org/. 300
GRID SCHEDULING AND RESOURCE
MANAGEMENT

[18] Spooner, D., Jarvis, S., Cao, J., Saini, S. and Nudd, G.
Local Grid Scheduling Techniques using Performance
Prediction, IEE Proc. – Comp. Digit. Tech., 150(2): 87–
96 (2003).

[19] Young, L., McGough, S., Newhouse, S. and
Darlington, J. Scheduling Architecture and Algorithms
within the ICENI Grid Middleware. Proceedings of the
UK e-Science All Hands Meeting, September 2003,
Nottingham, UK.

[20] YarKhan, A. and Dongarra, J. Experiments with
Scheduling Using Simulated Annealing in a Grid
Environment. Proceedings of the 3rd International
Workshop on Grid Computing (GRID 2002),
November 2002, Baltimore, MD, USA. CS Press.

IJSER

http://www.ijser.org/
http://www.sun.com/blueprints/0703/817-3179
http://docs.sun.com/app/docs/doc/817-5678/
http://www.cactuscode.org/

	2.1 Resource discovery
	2.2 The pull model
	2.3The push model
	2.4 The push–pull model

